
Smart City architecture for data ingestion and analytics:
processes and solutions

Pierfrancesco Bellini, Paolo Nesi, Michela Paolucci, Imad Zaza
DISIT lab, University of Florence, Http://www.disit.org <name>.<surname>@unifi.it

ABSTRACT. Smart city architectures have to take into account a
large number of requirements related to the large number of data,
different sources, the need of reconciliating them in a unique
model, the identification of relationships, and the enabling of data
analytics processes. Ingested data, static and realtime, must be
stored, aggregated and integrated to provide support for data
analytics, dashboard, making decision, and thus for providing
services for the city. This means: i) compatibility with multiple
protocols; ii) handle open and private data; iii) work with
IOT/sensors/internet of everything; iv) perform predictions,
behavior analysis and develop decision support systems; v) use a
set of dashboards to make a real-time monitoring of the city; vi)
consider system’s security aspects: robustness, scalability,
modularity, interoperability, etc. This approach is determinant to:
monitor the city status; connect the different events that occur in
the smart city; provide support for public administrators, police
department, civil protection, hospitals, etc., to put in action
city/region strategies and guidelines and obviously directly to the
citizens. In the paper, we focus on data ingestion and aggregation
aspects, putting in evidence problems and solutions. The solution
proposed has been developed and applied in the context of the Sii-
Mobility national smart city project on mobility and transport
integrated with services. Sii-Mobility is grounded on Km4City
ontology and tools for smart city data aggregation and service
production.
Keywords: Big Data, smart city data warehouse, Smart City
Architecture/Platform, Smart City Ontology, Decision Support
Systems.

1. INTRODUCTION
The main technical issues regarding smart city solutions are
related to: data access, aggregation, reasoning, access and
delivering services via Smart City APIs. The final aim is serving
city users in a smarter and efficient manner. Therefore, collected
and produced data are used to facilitate the creation of smart and
effective services exploiting city data and information. This
means to make effective and efficient the data access with their
semantics, the service delivering, the access to define and control
dashboards, and the interoperability with any other smart control
systems active in the city (e.g., mobility, energy,
telecommunication, fire brigade, security, etc.). In the world,
municipalities/cities and public administrations are publishing
huge amount of open data. These data can be coarsely aggregated
for integration by using solutions such as CKAN [CKAN],
OpenDataSoft [OpenDataSoft]. In some cases, they provide
access to effective datasets, by using some data integration and
visualization tools which provide the possibility of creating
graphic charts, such as distributions or pies, on the basis of the
values contained in the dataset. In sporadic cases, they also
provide access to datasets as Linked Data (LD), Linked Open
Data (LOD), coding data information in terms of RDF triples
[Barneers et al.]. Very rarely, they can provide data from some
RDF store endpoints to make SPARQL queries on the data
exploiting some ontology and other entities [SPARQL], rather
than working only on metadata. The access to RDF stores for data

browsing can be performed by using visual browsers as in [Bellini
et al., 2014]. In most cases, the effectiveness of data service
system for Smart City is enabled by the availability of private data
owned and managed by City Operators addressing specific
domains: mobility operator, energy providers, business services
(health, water), telecom operators, tourist operators, universities,
etc. Real-time data are provided by city operators through some
APIs as Web Services or REST calls. The APIs for providing data
to the data aggregator of the city may be compliant with multiple
standards (such as DATEX II for mobility, intelligent transport
system for public services, parking; IETF [IETF], ETSI [Lin et al.,
2013] or OneM2M [Swetina et al., 2014] for Internet of Things
(IOT), Green Button Connect for energy data collection. Thus,
the developers may collect data that still need to be aggregated to
make them semantically uniform, referring to the same elements
in the city, and to establish multiple agreements.

The effective deploy of smart services for city users is very
frequently viable only by exploiting the semantic integration of
data as: open data, private data and real-time data coming from
administrations and different city operators. This implies specific
processes of reconciliation and the adoption of unifying data
models and ontologies as in Km4City [Bellini et al., 2014b]. The
semantic aggregation of data coming from several domains is
unfeasible without a common ontology, since data are produced
by different institutions/companies, by using different formats and
aims, different references to geographical elements, and different
standards for naming and identification adopted in different
moments. Thus, datasets are rarely semantically interoperable
each other since have been produced in different time, by different
systems, by different people, etc. In addition, they may present
different licensing models: some of them can be open, while other
may be private of some city operator that would not be interested
to lose the ownership by releasing them into an unregulated
environment, or could simply provide some restrictions (e.g., no
commercial); see for example the data of car sharing companies
that are typically private of the company. Well aggregated and re-
conciliated data for the identification of services and locations
(open and private) can be exploited by reasoning algorithms for
enabling sophisticated service delivering. For example, by
providing suggestions and hints on route planning, inter-modality
routing, parking, hospital finding in the case of emergence,
finding specific point of interests, setting predictions (for parking
and traffic) and detecting anomalies for early warning. The data
values (actual, predicted and/or detected) can be delivered to
different operators and city users by some personal assistants on
the basis of the user profile and role. For example, to provide
information about what is or what would be around a current GPS
position, the integration of geographic information and services is
needed; while the integration of geo-localized services and the
assessment of typical people flows may help the city in improving
public services and transport, providing suggestions to the city
users, and planning changes in the city [Castillo et al., 2014].

This paper presents the work performed on defining smart city
architecture and assessing its performance, as developed in the

137

2018 IEEE Fourth International Conference on Big Data Computing Service and Applications

0-7695-6396-1/18/$31.00 ©2018 IEEE
DOI 10.1109/BigDataService.2018.00028

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 30,2020 at 17:22:26 UTC from IEEE Xplore. Restrictions apply.

context of Sii-Mobility smart city project. Sii-Mobility aims to
provide innovative services for mobility operators and city users
moving in the city and in the region, to provide solutions for
sustainable mobility and transport systems. In the literature, there
are several proposals for smart city architectures, but only few of
them are really in place with a relevant range of distinct kinds of
processes, such as addressed in this paper. Most of other projects
are mainly centered on manage wireless sensors networks, IoT
such as the FLEXMETER platform [Patti et al., 2016], the
Barcelona smart City Architecture [Sinaeepourfard et al., 2016]
and the ALAMANC EU project [Bonino et al., 2015]. In Sii-
Mobility, specific smart algorithms for data aggregation, personal
assistance; solutions for dynamically shaping restricted traffic
zones; production of personalized suggestions to allow the city
users movements, aiming at improving sustainable mobility, etc.
have been developed. These requirements necessitated a deep
analysis of the state of the art proposals, to identify and then
develop a solution allowing performing reasoning and deduction
on city data collected from city operators, as open data and private
data, as static and real-time data, as multiple domain data for
producing suggestions and stimulus to city users [SIIMOB-DE1-
1]. In this context, the main goals of an innovative and suitable
architecture have been: (i) the data ingestion and aggregation
services to integrate different kinds of data creating a real
knowledge base for the city (a sort of expert system with
inference capability), (ii) the computational capabilities and
process management in the backend and in the front-end, (iii) the
formalization of the Smart City API by which all the web and
mobile Apps, and dashboards may have access to the smart city
knowledge and services [Badii et al., 2017]. The work presented
in this paper has been performed in the context of the Sii-Mobility
smart city project on mobility and transport aspects and integrated
with city services in general (http://www.sii-mobility.org). Sii-
Mobility project includes 24 industrial partners from industry and
research, and it has been partially founded by the Italian Ministry
of Research as a special national program on Smart City, MIUR
SCN. Sii-Mobility is focused on providing innovative services in
Tuscany, which is an area of 3.5 million of inhabitants, and it
involves the Tuscany Region and several municipalities and local
governs in the area for the experimentations, covering almost all
the Tuscany region.

The paper is organized as follows: in Section 2 the Sii-Mobility
Smart City General Architecture is described; Section 3 presents
the details related to the Smart City Data Ingestion and
Aggregation Layer; in Section 4 the description of the Sii-
Mobility Storage is reported. Section5 contains the Conclusions
of our work.

2. Overview of Sii-Mobility Smart City
Architecture
In this section, the key features of the Sii-Mobility architecture for
smart city management are depicted. The architecture is described
in Figure 1, putting in evidence the major components/tiers of the
architecture. In general, the architecture is multitier and provide
support for big data collection, analytics and intelligence,
exporting / providing a number of services. In the following sub
paragraphs, the major components will be better described, while
details and a deeper discussion is provided for the most
challenging aspects as discussed in the sequel.
The Ingestion Layer collects, harvests and processes various
kinds of datasets and data streams characterized by high
heterogeneity. For this reason, a process of data analysis and
transformation is needed to make them interoperable and reusable.

The data are collected in the form of: i) Open Data and come
from: municipalities, Tuscany region (Observatory of mobility),
LAMMA weather agency, ARPAT environmental agency, Social
Media, etc.; ii) Private Data (data with some restriction) coming
for example from City/Regionals Operators or personal mobile
phones and regarding: users’ actions, mobility, energy, health,
cultural heritage, services, tourism, wine and food services,
education, wellness, environment, civil protection, weather
forecast, etc.

Moreover, the data mainly comes from: (1) technically as web
services, sensors, static files, etc., each of which, respecting a set
of standards (or format types e.g. csv, json, html, xml, shape,
etc.); (2) different providers: City Operators, Data Brokers,
citizens, etc.; (3) different classification subareas (Point of
interest, events, public Transports, traffic flows, etc.); and (4) can
be both static and dynamic (or real-time); (5) Tv camera
monitoring the territory; (6) social media crawled for collecting
post related to the city; (7) city users from the their Apps and also
from their specific contribution to participate to the city life, and
with their profile, collecting profile for user kind (citizens,
commuter, tourist, student, etc.); (8) IOT, internet of things
sensors that may be provided by the operators as well as from the
city users, etc.

The datasets are collected, improved in quality and successively
aggregated and saved in the Sii-Mobility storage by using
processes implemented as specific codes (as in the case of
streams) or ETL. The latter mainly realized exploiting the Pentaho
Kettle tool, for which a new module connecting Phoenix has been
developed.

As a result, the Ingestion Layer elaborates data to save them into
the central storage of the smart city architecture. Please note that,
typically in a smart city a large number of entities described in
with a number of attribute and/or producing data are present. So
that, the best model for putting them in relationship is reticular to
model the high number of relationships among entities. An
example is the street graph. In addition, a relevant number of
entities produce data over time. For example, real time data such
as: traffic sensors, IOT devices, fuel prices, parking status, etc.
The latter kind of data, are forming the historical data on which
the data analytics and strategies are mainly performed. Thus, due
to the large amount of data arriving in the storage and exploited
by data analytics processes, a mixt of noSQL solutions has been
adopted integrating graph database with tabular storages [HBase,
Phoenix], [Virtuoso]. Thus, due to the complexity of the data

Figure 1. Sii-Mobility General Architecture.

138

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 30,2020 at 17:22:26 UTC from IEEE Xplore. Restrictions apply.

flows, their variability, variety, and velocity we can be talk about
big data architecture for smart city [Badii et al., 2017].

The Aggregation and Data Analytics Layer aggregates the data
thanks to a Km4City multi-domain ontology creating a
Knowledge Base for the city (a sort of expert system with
inference capability) [Bellini et al., 2014b]. The creation of a
unified model of relationships among the city entities in a
common Knowledge Base if fundamental to enable effective data
analytics and inferential processing related to the context of the
city. The resulting processes and data are used for supporting
decisions on the city strategies on the basis of: analysis,
prediction, anomaly detection, early warning, suggestions,
recommendations, etc. They can be used for improving the city
services – e.g., intensifying the cleaning in specific areas,
changing the schedule of the public transportation, changing the
shape of the restricted traffic zone, tuning the price of parking for
user profile and time slot, etc. Thus, the resulting data are made
accessible on Dashboards, mobile App, notifications, reports, etc.

Therefore, the Big Data Analytics algorithms are capable to
manage and produce new knowledge for the different kind of city
users involved, such as citizens, students, commuter, tourists, city
operators, public administrations, researchers and developers, etc.
For example, the most active data analytics areas are devoted to,
[Badii et al., 2017]:

� data reconciliation on the basis of a unified geographical
references useful to make queries on the Knowledge Base
along lines, area and for proximity; To this end a number of
geolocation algorithms can be used, also processing the text
with NLP approaches and exploiting the street graph into the
knowledge base for recovering and connecting entities to geo
locations as street, locality, region, POI, etc. Thus, allowing
to provide answers to questions such as: since I am on Bus
14 now, which is the bus stop at which I can found a very
close milk shop for the baby.

� User Behaviors analysis is typically performed on the basis
of data collected from the Apps, TV camera, Wi-Fi access
points, cellular networks of the telecom operators,
registration to the hotels, accesses to the museums, usage of
the public transportation, etc. The resulting elaborations in
some cases can be clustered for user kind, age, nationality,
sex, for the different time slot of the day, etc. The most
appreciated resulting data are the list of most requested
points of interests, the mostly adopted trajectories, the origin
destination matrices, etc. [Bellini et al., 2017]

� Predictions: to provide a guess about how much the city
services would be exploited the future, from the next
minutes, to hours, weeks, etc. Predictions can be directly
appreciated and used by city users, decision makers. For
example predicting: available parking lots in any specific
area, traffic flows and collapsing area, people flows, triage
usage of hospitals, incidents in the streets, etc. Thus,
answering to questions of the city users such as “How many
available places there will be in the car park Firenze,
tomorrow at 12:00?”.

� Early warning: detecting anomalies in the city usage and
behavior may help to identify the inception of unexpected
events: a water bomb, a pipe broken, etc. Differently from
the predictions, the identification of anomalies works
comparing the current trends with respect to the predicted
values, taking into account contextual data. For example, the
arrival of a large amount of people in a square with respect to
the typical values may be due to the organization of special

events or to a closer disaster that is pushing the people to
move. Typical data for the early warning detection can be
obtained from environmental, traffic and people flow, water
level, acoustic data, social media, etc.

� Routing: starting from the Knowledge Base and contextual
information it is possible to provide answer to questions:
which is the fastest rout to reach the hospital for the
ambulance taking into account busses, garbage collection,
etc., what is the safest route to reach from A to B if I move to
bike today, what is the most ecological (use of public
transport, bike, on foot, etc.) route to get to Piazza Signoria
passing by a baker?. Most of the questions cannot be
answered by commercial or state of the art applications such
as Google Map, TomTom, Garmin, etc..

� Suggestions and recommendations: Suggestions and
recommendations can be computed on the basis of: (i) the
user profile collected from the App and from the social
media, via OAuth, mutuated registration, or provided by the
user directly; cumulated from the user behavior analysis; (ii)
contextual information about the city from the knowledge
base. For example, for providing advertising, or for
suggesting alternative POI, etc.

� User Assistant recommendations can be computed on the
basis of the contextual information and exploiting the user
behavior and profile, for pushing them in taking a more
virtuous behavior. For example, for stimulating the city users
moving by their private cars to take the public transportation,
or city users not walking enough to take a more healthy
behavior. To this end, the behavior of the users has to be
quite precisely monitored, for example, via specific Apps.

� User Engagement requests can be provided to the city users
adopting the smart city APP to request them providing
additional information, such as: number of people in a given
area, to rank a service, to take a picture, to describe the
queue, etc. The computation of the engagement has to be
prepared in advance and exploit more or less the same data
available for providing User Assistant recommendations.
[Badii et al., 2017].

� Ticketing and Booking: it provides to the citizens a set of
services regarding the purchase and reservation of tickets for
events such as theatre, stadium, etc. or for public services
such as the use of buses or tramway, may be providing a full
travel ticketing with multimodal routing and multiple
reservation from multiple providers.

Smart City API (Application Program Interfaces) Layer is
fundamental to provide both: (i) aggregated data and (ii) services
to Web and Mobile Applications, and eventually to third party
city operators. Most of the Smart City APIs are substantially
presenting a small set of features by using a REST Call service. In
our case, the API are provided in multiple formats and modalities
since Sii-Mobility is grounded on Km4City ontology and tools for
smart city data aggregation and service production consist in the
possibility of posing requests [Nesi et al., 2016]. The provided
modalities for Smart City API are:

� SPARQL Query requests directly performed on the RDF
Store endpoint using the standard SPARQL query protocol
(based on REST) using GET or POST requests with the
query parameter containing the SPARQL query, for example
accessing to the Km4City endpoint;

� SPARQL Query with Inference: requests directly
performed on the RDF Store endpoint
http://servicemap.disit.org/WebAppGrafo/sparql, by using
the SPARQL query protocol (based on REST) using GET or

139

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 30,2020 at 17:22:26 UTC from IEEE Xplore. Restrictions apply.

POST requests with the query parameter containing the
SPARQL query, including inference aspects in the case of
Virtuoso, or automatically exploiting the inference in the
case of OWLIM [Bellini et al., 2015b];

� REST: calls are performed by using APIs using full text,
keywords, service ID (URI) to get info, geolocation, service
ID (URI) to get closer services, time, etc.;

� Query ID: calls are performed by using a QueryID
(identification) assigned by some visual tools to form and
save the queries such as the ServiceMap
(http://servicemap.disit.org) tool manager, after having
performed a query by using the graphic user interface, as a
visual query.

The Application Layer includes a set of applications that can be
developed thanks to the Smart City APIs Km4City and can be
divided in:

Development Tools: created to help the developers to find the
different kind of data, data types, semantic information managed
in the Sii-Mobility Knowledge Base:

� Service Map (http://servicemap.km4city.org) allows to
visually formalize queries and generate calls compliant to
Km4City Smart City API. These calls are directly sent via
email to the developer for shortening the production of web
and mobile applications as described in the sequel. [Badii et
al., 2016]

� Linked Open Graph (LOG), which is a web application
(http://log.disit.org) allowing the users to explore the
Knowledge Base (KB) to see all the relations among the
entities that are present in the KB also those hidden from the
user interface. For example, it is possible to understand how
the services are connected with the street graph or how to
access to complete real-time information. The LOG allows to
visually navigate the relations among the KB entities [Bellini
et al., 2014].

� SPARQL RDF Store Interface, it allows the developers to
pose SPARQL queries on the KB and get results.

� Apache Zeppelin which is a web-based notebook that
enables interactive data analytics with dynamic visualizations
on the distributed NoSQL storage.

Applications:

� Mobile and web Applications, such as the mobile App
“Florence what where” (http://www.disit.org/app). Data
about changes in the City Users status are collected
continuously, and the system receives requests from the
Mobile App periodically. Most of the services of the city are
provided via the Apps, and on the other hand, the App can be
used to collect user behavior, engagement, contributions, etc.

� Dashboards for Control Rooms, a set of dashboards
monitoring high level view data. Typically, they are
thematically created: mobility and transport, social media,
energy, environment, health, resilience, etc. The Dashboard
are designed to stay H24 on the wall of the control room or
to be used by operators on their desktops. Dashboard Engine
and Dashboard Builder, is a tool realized to automatize the
creation of different dashboards. This because different final
users can be interested in different information or can have
access only to a limited group of data. Notificator, is a tool
for generating and management of events with the following

features: i) association of events generators, event types,
messages, and recipients; ii) message book to define and
manage messages; iii) address book to add and manage users
and their e-mail addresses; iv) logging system for all the
events monitored, to consult past events details with several
search filters; v) Graphic User Interface (GUI) to add, edit or
delete client applications to decide how to manage their
notifications.

� Participation tools, a set of instruments to inform the city
users about the city status. The information can substantially
be provided to the city users via Web Pages on their
computers via web as well as on specific Totem/Kiosks
positioned in public locations (such as: station, bus stops,
etc.). Belong to this type of tools also the (i) Variable
Message Panels, VMP, which are typically positioned on the
road entering in the city, or the bus stops, and that may be
visualized limited information as text and very simple
graphs; (ii) loudspeakers to inform the city users in the
metro, in some square, on the Bus/train, (iii) direct call with
automated calling system and SMS sending. These tools are
typically exploited to advice the citizens and give them
suggestion in case of critical events, such as: crowed
condition, pollution condition, bomb attack, flooding of a
river, fire, interrupted roads, etc.

� ProcessLoader allows at the non-technical users to upload,
schedule and monitor processes in the Smart City back
office. So that for uploading processes into the smart city
back office, one does not need to know the functioning of the
smart city complex tools. The processes can be ETL for data
ingestion, as well as data analytics in multiple languages
such as: Java, Python, R, C++. The Process Loader directly
interfaces with the back-office process scheduler that is the
DISCES (Distributed Smart City Engine Scheduler). The
uploaded processes can be activated as periodic or
sporadic/on demand execution. They may have a starting
time or deadline, the typical duration, etc.

3. Managing Ingestion and Aggregation
In this section, a more detailed view on data ingestion and
aggregation aspects and problems is presented. The data ingestion
in the context of smart city implies the solution of a number of
problems among them: (i) the management of several different
data sets and streams, from static to dynamic data, coming from
different sources, in different formats and with different rates that
have to be integrated each other, to refer to the same city entities
and services, (ii) the storage of ingested data to make them
accessible from a big data storage for data analytics, referral and
statistics data and just for showing historical trends in the different

Figure 2. Sii-Mobility Detailed Architecture.

140

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 30,2020 at 17:22:26 UTC from IEEE Xplore. Restrictions apply.

contexts.
The resulting detailed architecture is reported in Figure 2 where
two main blocks are reported for describing the Ingestion and
Aggregation and the Storage. Their design and functionality will
be described in details in the next subsections.

3.1 Ingestion and Aggregation
The data to be ingested into the smart city can be Static or
Dynamic. Static data are those that change sporadically or with
low rate, for example one every month. Dynamic data are those
that change over time, with their specific data rate.
Due to the large difference among these two aspects they have to
be managed in different manners. Moreover, a relevant role is
covered in the city by private data coming from mobility and
transport such as those created by Intelligent Transportation
Systems, ITS, for bus management, and solutions for managing
and controlling parking areas, car and bike sharing, car flow in
general. Both open and private data may include real time data
such as the traffic flow measure, railway and train status with
respect to the arrival, parking areas status, Bluetooth tracking
systems for monitoring people movements, and TV cameras
streams for security and flow assessment.
Both PA sand mobility operators have large difficulties in
elaborating and aggregating data to provide new services, even if
they could have a strong relevance in improving the citizens'
quality of life. Therefore, our cities, even those very active in
smart city, are not so smart as they could be by exploiting a
semantically interoperable knowledge base on the available data.
Static Data are largely created as open data from PA. They may
be statistic information about the city, locations of point of
interests (POIs), information about GOV services, etc. This
information is typically accessible as public files in several
formats, such as: SHP, KMZ, CVS, ZIP, XML, etc. For the points
of interest, POI, the information recovered can be related to:
museums, monuments, theaters, libraries, banks, express couriers,
police, firefighters, restaurants, pubs, bars, pharmacies, airports,
schools, universities, sports facilities, hospitals, emergency rooms,
government offices, hotels and many other categories.
On the other hand, in most cases, the data sets are not
semantically interoperable. The typical problems start with the
management of the complexity of the several distinct input data
sources, in terms of: formats, publishers and licenses (private or
public data), method adopted to expose/publish the data by the
data providers, etc. In this context, a relevant problem is the
quality of data and their needs of reconciliation with the other
information. This means to adopt a common strategy to make the
data uniform and referring to the same entities. For example, a
single street address (‘VIALE SPARTACO LAVAGNINI, 16’)
can be referred in many different modalities depending on the
rules used from the database from which they have been extracted
(‘V.le Spartaco Lavagnini’, ‘v. S. Lavagnini’, etc.).
Therefore, the process of data ingestion for static data has to
include activities (see Figure 2) of:

� Ingestion of the data set file: it may take files from web
with HTTP/FTP protocols or make calls to web services
authenticated or not. Each ingested data set has to be stored
into a storage (implemented in this case with Hbase) to keep
trace of the eventual changes over time of the static data,
thus performing the versioning of the static data sets.

� Quality Improvement: it aims to increase the accuracy and
consistency of the information ingested through a standard

format identified for each specific field of the datasets. It
makes and harmonization and reconciliation of the data. For
example, different data providers use personal modalities or
adopts different standards to describe a street, a Point of
Interest, a kind of measure, a GPS coordinate, etc. In this
case, the process of quality improvement, generate a new
version of improved data directly into the Hbase storage.
Please note that the quality improvement algorithm may
radically change the data structure, for example splitting data
in more fields, enriching record with more information (e.g.,
GPS location, CAP, etc.).

� Triplification (mapping): to produce a set of RDF triples
compliant with the Km4City Smart City multi-ontology and
saved in the RDF Storage (more details on the next section).
The goal in fact is to map the data on a semantic model and
store this information into an RDF store, to have data
semantically most significant of the raw data ingested,
passing through the ingestion and quality improvement
phases described in section 3. The semantic Ontology used to
produce the RDF data Knowledge and useful to make the
sematic aggregation is Km4City [Km4City]. KM4City is a
multi-ontology adopted in many European and National
projects, such as Sii-Mobility, Replicate, Resolute [Sii-
Mobility], [Replicate EU project, http://replicate-project.eu/
], [Resolute EU project, www.resolute-eu.org].

Each data has its own ingestion process consisting of a number of
scheduled ETL transformations (Extract, Transform, and Load)
managed by the distributed scheduler, DISCES, see Figure 2.
Typically, one for each phase. DISCES: Distributed SCE
Scheduler consists of a set of distributed instances of running
agents performing concurrent tasks on multiple servers (Virtual
machines, Nodes). ETL transformations for static data are
periodically executed to see if the data source has been changed,
and in the positive case, the ingestion is updated.

On the other hand, most of the data sources descriptors may be
affected by the above described problems and may also fit in
model providing a super set of fields (such as: ID, description,
category, location, street, etc.) which can be automatically
ingested, and only some of them may be mandatory. For this
reason, the DataGate tool has been created to allow users to
provide data in terms of CSV files, automatically perform the
activities of quality improvement and reconciliation. And since
not all cases can be solve, the DataGate assists the user with a
wizard to perform a limited number of activities for solving the
remaining critical problems.
DataGate is an plugin module of CKAN [CKAN]. It provides
support for automatically converting datasets of static POI into a
Km4City compliant format and Knowledge Base. Thus, non-
technical users can: i) upload dataset (churches, museums, hotels,
hospitals, etc.) following a template in a csv format; ii) see data
set improved automatically (e.g., extraction of latitude and
longitude from street and civic numbers, augmenting the location
with CAP, province, locality, and information taken from Web);
iii) classify the information uploaded according to the Km4City
ontology; iv) publish the dataset on the Datagate Portal in
regularized format for promotion and further reuse; v) generate
triples for the Knowledge Base. For example, the publishers can
use the Service Map to see the points of interest in the map.

Dynamic Data are those that change over time, with their specific
data rate and typically refer to static data. For example, a sensor is
classified as static data when it is registered on a given position
and data type; while it can be generated a lot of real time data

141

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 30,2020 at 17:22:26 UTC from IEEE Xplore. Restrictions apply.

without changing the initial registration of its ID and GPS location
and data type (i.e., temperature). Most of the dynamic data are for
example: weather forecast, value from environmental aspects,
measures of pollution, traffic flow, parking status, people flow
monitoring, events in the city about traffic and ordinances for city
maintenance, IOT sensors, opening time and day for pharmacies,
triage status, status of bridges, RTZ status, queue status of the
GOV services, etc. They are strongly heterogeneous in terms of
data structure and almost homogenous in referring to some static
descriptor of the GPS point/entity at which they refer.
Also in this case, the ETL processes can be used and have to be
scheduled as back office data ingestion process (see Figure 2).
The scheduling by DISCES of these processes is much more
computational consuming with respect to the processes for static
data ingestion. In fact, real time ingestion can be performed with
rates that are from few seconds to 1-2 times per week, for
example. The results of the real-time data ingestion could impact
on both:

� Knowledge base: when the data collected is not related to
static information. For example, the real-time information
about the bus line paths may change over time and typically
refer to new paths (new position of bus stops, etc.) in the city
and thus the Knowledge base has to be updated to allow city
users discovering where the bus is passing.

� Tabular storage: when the data collected are instances of
entities. For example, the value measured for a sensor at a
given date and time. Belong to this type of data process also
those arriving in push as: (i) stream that have to be collected
with dedicated server processes and stored, such as data
provided by Apps, data provided by Access Point monitoring
people flow, etc., (ii) IOT data according to publish subscribe
protocols, for example, LoraWAN, NGSI, SigFox, MQTT,
AMQP, COAP, ETSI M2M, OneM2M, etc.

In first case, the final results are new triples in the KB, while in
the second case, just new records in the storage. In both cases, the
KB and the tabular storage have to be keep connected since the
passage from geo located information to data and viceversa are
mandatory.
In the above described cases, the adopted ETL tool has been
Penthao Kettle.

3.2 The Storage
The data ingested have to be stored into a distributed storage with
high performance and with fault tolerance capabilities to perform
the data analytics, the access from dashboard and the access from
mobile and web app via Smart City API. The data analytic
processes, also produce additional knowledge and data that have
in turn to be stored into a safe storage for contributing to the same
services: dashboard, further analytics, business intelligence, Web
and mobile Apps, etc. According to the above description, the
variability, complexity, variety, and volume of these data flows
make the data process of ingestion, aggregation, and data
analytics as a “Big Data” problem. The variety and variability of
data can be due to the presence of several different formats, and to
scarce (or non-existing) interoperability among semantics of the
single fields and of the several data sets.
The storage architecture depicted in Figure 2 comprehends: the
RDF storage hosting the KB composed of the RDF triples and the
Km4City ontology and a large distributed NoSQL database for all
the real time tabular data described above.
The RDF store holds mainly static data, and dynamic data that
change geolocation and geodescription overtime. A RDF stores

can be: in-memory, native, non-memory non-native. In-memory
RDF stores the RDF graph in main memory and hence could not
be adopted for storing extremely large volumes of data. The
native triple stores provide persistent storage with their own
implementation of the databases. The non-native non-memory
triples stores are set up to run on third party databases like
MySQL, PostsgreSQL, Oracle. In the case of Firenze/Tuscany,
the initial KB with only static data was of about 81 Million triples,
with growth of 4 million triples per month. Actually, the number
of triples in the RDF store is in the order of 300 million. An
efficient RDF storage should offer both scalability in its data
management performance and variety in its data storage,
processing and representation. On the other hand, the KB has to
be periodically cleaned since the historical data may create a
reduction in performance [Bellini et al., 2016]. In our solution, the
RDF Storage of the KB has been implemented by using a
Virtuoso triple store. Virtuoso, is a native triple store available in
both open source and commercial licenses. It provides command
line loaders, a connection API, support for SPARQL and web
server to perform SPARQL queries and uploading of data over
HTTP.
The tabular data collecting real time data for referral information
should be stored into a noSQL database that should be easily
accessible for Data Analytics. This means to make them
accessible for drill down via SQL, for example via Zeppelin or
other database browser. On the other hand, most of the noSQL
databases are not SQL compliant and thus languages such as R,
Java, Python, ETL, etc., have to provide special plugin / extension
to access them in read and write modalities. Also, having standard
interface for query data permits the developer to avoid writing
specific code for retrieving specific data. There are two dominants
per type NoSQL databases: MongoDB (document oriented) and
HBase (Wide Column Store). Wide column stores introduced by
google Bigtable stores data in records with dynamic columns.
Document stores, also called document-oriented database systems,
are characterized by their schema-free organization of data i.e.
records do not need to have a uniform structure (the types of the
values of individual columns can be different for each record).
MongoDB is an open-source document-oriented. It uses JSON,
allowing for a schema less data model where the only requirement
is that an id is always present. MongoDB’s horizontal scalability
is mainly provided using automatic sharding. Conversely
MongoDB is doe not automatically treat operations as transactions
and needs closed source solution to expose a standard interface
SQL oriented.

Figure 3. Sii-Mobility Detailed Architecture.
Apache HBase is a non-relational distributed database inspired on
Google’s BigTable. It has a fault-tolerant way of storing data and
it is good for storing sparse data. Similarly to Google BigTable, it
does not support full ACID semantics, although several properties
are guaranteed.

142

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 30,2020 at 17:22:26 UTC from IEEE Xplore. Restrictions apply.

In Sii-Mobility Architecture, Apache HBase has been adopted and
deployed on an Apache Hadoop cluster which is configured in
High Availability mode: 2 masters plus 4 slaves with automatic
failover. High availability is obtained by distributing meta data
filesystem information by distributed service i.e. journal nodes
ensembles. The automatic failover is realized by failure detection
and active node election mechanism implemented on a distributed
configuration service i.e. Apache Zookeeper. Apache Zookeeper
is a highly available service for maintaining small amounts of
coordination data, notifying clients of changes in that data, and
monitoring clients for failures. While for the ingestion phase a
standard HBase deploy fulfill the above requirements, on the other
hand it’s inefficient when coping with dynamic data.
Moreover, querying data from HBase is implemented by scan
operations which access all the table HBase does not have indexes
as the MySQL database. The access pattern is based on row key.
Orthogonal access patterns require a scan of the whole table
(server-side), and then the application of additional filters (client-
side). So, it is possible to apply custom filters, client-side, to the
whole table to analyze a subset of the results but this does not
reduce server-side IO costs. This mechanism inevitably involves
high computational costs. To overwhelm this limit, the Distributed
NoSQL Storage is implemented as Apache HBase with Apache
Phoenix [Phoenix].
Apache Phoenix, that is an open source and relational database
layer that is built on top of HBase. Apache Phoenix permits
applications to store, retrieve or query millions of rows data from
HBase by Structured Query Language (SQL) near real-time
[Gupta et al., 2015], [Chrimes et al., 2015]. The advantage of
Phoenix is that it achieves real time responses compiling the
queries and statements from the client into a series of HBase
‘intelligent’ scans, filters, and coprocessors and then runs them to
produce a selected result set. Phoenix allows to return therefore no
longer the whole table but only the data requested by the client.
Phoenix retrieve time is in the order of milliseconds for smaller
queries and seconds when using millions of rows.
Phoenix provides JDBC (Java Data Base Connectivity) to JVM
base clients and PQS for non-JVM base clients. PQS allows the
non-JVM base clients to use a thin driver for the query plan,
execution, and processing on an external server process to be
scaled horizontally, independent of the client process as the query
server is stateless. The thin driver is based on the Avatica
framework, which provides an API between the client and the
server [Avatica]. In Avatica, the server is an HTTP server and the
client is a simple JDBC driver that allows the client to
communicate over protocol buffers or JSON. Wire protocols
provide the flexibility to have clients in non-JVM languages.
Phoenix is a relational database layer because it offers:

� Transaction support: has full ACID (Atomicity, Consistency,
Isolation, Durability) semantics with the help of Apache
Tephra for HBase row-level transactional semantics. Apache
Tephra provides snapshot isolation of concurrent transactions
by implementing multi-versioned concurrency control.

� User-defined functions: can be temporary or permanent user-
defined or domain-specific scalar functions. Temporary
functions are specific to a connection and are not accessible
in other connections.

� Secondary indexes and views: are created for a large
frequently accessed table when primary index sorting is not
possible or hard to apply. Secondary indexes created on
alternate row keys can allow point lookup, are much faster,
and do not require a full scan on the table.

Phoenix supports view syntax as happens in standard SQL to
enable multiple virtual tables to all share the same underlying
physical HBase table.
To connect the ETL processes with the Distributed NoSQL
Database, in the case of Dynamic datasets (ETL Direct save in
Figure 2), it has been made an analysis related to the connections
between Phoenix and Pentaho, from which emerges that: i)
Pentaho uses an abstraction layer, called shim, that connects to the
different Hadoop distributions; ii) shim is a small library that
intercepts API calls and redirects or handles them, or changes the
calling parameters. Because those shims are developed
specifically for Hadoop distributions vendors such as Cloudera,
Hortonworks and MapR, it was developed a plugin to query
Phoenix cluster via JDBC with the version of HBase Hadoop
actually installed. This plugin is implemented as a “user defined
class” Pentaho object.
The plugin is a user defined class which essentially reads the
value and the relative meta data, constructs the query and commits
it on the NoSQL Database.

4. Experimental results
For the case of Florence/Tuscany area, we are addressing more
than 800 different data sets sources of the 1550 available. Each
open data ingestion process has to retrieve information and
produce records in a noSQL DB for big data, logging all the
information acquired to trace back and versioning the data
ingestion. Then, the data have to be completed and improved in
quality; and finally, data obtained are placed in tabular form, and
triples RDF linked data form. At regional level, Tuscany Region
provided a set of open data into the Mobility Integration
Information Center of the Tuscany Region (MIIC), and provide
integrated and detailed geographic information reporting each
single street in Tuscany (about 137,745), and the locations of a
large part of civic numbers, for a total of 1,432,223 (a wider
integration could be performed integrating also Google maps and
yellow/white pages). The solution has been adopted by the
Florence municipality as the Smart City data aggregation tool. On
which a number of additional projects have been based as:
REPLICATE, RESOLUTE, etc.
The static data sets produced about 180.000 POIs each of which
with complex set of data. In addition, a part of them (about 100)
have been ingested by using DataGate that was not available since
the beginning. Since its activation 85% of datasets for static data
are ingested via the DataGate and thus the data ware house does
not need to the programmed as new ETL process. Among those
automatically ingested: cultural activities (libraries, churches,
museums, theaters, monuments, etc.), hospitals, Wi-Fi,
entertainments (beaches, …), accommodations (B&B, hotels, …),
etc. in Florence, Venice, Bologna, Sardinia. More complex static
data still have to pass via dedicated ETL processes such as:
conversion from street graphs, limited traffic zones, cycling paths,
etc. The static data are only a minimal part of the smart city
complexity in terms of data ingestion.
For the Real Time data, every day about 5900 processes are
executed. They include data from the ingestion of: bus tracking,
mobility events, traffic flow sensors, parking, Apps positions and
requests, Wi-Fi monitoring people flow, fuel station prices,
weather forecast, environmental and pollution values, IOT
sensors, first aid triage, public transportation lines updates,
recharge station, time schedule for pharmacies and other services,
etc., for about 1.8 Gbyte of new triples per day, 315.000 new data

143

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 30,2020 at 17:22:26 UTC from IEEE Xplore. Restrictions apply.

groups per day collected, integrated and linked to the graph
database for Smart City API, data analytics, and Dashboards.
The typical success rate per day for the scheduled processes for
data ingestion is close to the 94%. The faults are typically due to
communication problems, the lack of communication with the
server providing the data.

5. CONCLUSIONS
Smart city permits monitoring the city status connecting the
different events that occur in a city at a given instant of time,
provide suggestions to Public Administrations or other city
authorities such as police, civil protection, hospitals, etc., permits
to put in action city/region strategies and guidelines and obviously
directly to the citizens. A smart city must cope with many kinds of
data coming from different contexts which must be aggregated
and integrated to have a general overview of the city. This means
ensuring compatibility with multiple protocols from urban
operators, handling open and private data, with the corresponding
licenses, work with IOT/sensors/internet of everything, in cloud,
perform predictions. Manage and aggregate all the aspects
involved in a Smart City/Region/State means to solve a Big Data
problem. This paper presented the work performed on defining
Sii-Mobiility which is a smart city multi-tier architecture and
identifying related issues and solutions. Moreover, the paper
focuses on ingestion and aggregation phase motivating the
adoption of polyglot persistence, addressing scalable solutions
based on Hbase and Phoneix and at the same time collecting
graphs and relationships into a graph DB with semantic acss and
inference capabilities. This hybrid approach of multiple noSQL
data store is a good compromise in having sophisticate queries
formulated by using SPARQL and managing data into large
scalable noDQL data store. To allow a better integration ETL
processes have been endowed of tools for interfacing with
Phoenix and thus with Hbase. Finally some figures have been
discussed referring to Tuscany area in center of Italy.

6. ACKNOWLEDGMENTS
Our thanks to the MIUR, to the University of Florence and
companies involved for co-founding of Sii-Mobility Project SCN
0112. Km4City is an open source technology of DISIT Lab.

7. REFERENCES
[Avatica] https://calcite.apache.org/avatica/
[Badii et al., 2016] C. Badii, P. Bellini, D. Cenni, G. Martelli, P. Nesi, M.

Paolucci, Km4City Smart City API: an integrated support for mobility
services, in: (SMARTCOMP) IEEE International Conference on
Smart Computing, IEEE, 2016.

[Badii et al., 2017] Badii, C., Bellini, P., Cenni, D., Difino A., Nesi, P.,
Paolucci, M. Analysis and assessment of a knowledge based smart
city architecture providing service APIs. Future Generation Computer
Systems 75 (2017) 14–29.
https://doi.org/10.1016/j.future.2017.05.001

[Badii et al., 2017] Badii, C., Bellini, P., Cenni, D., Difino, A., Paolucci,
M., & Nesi, P. (2017, May). User Engagement Engine for Smart City
Strategies. In Smart Computing (SMARTCOMP), 2017 IEEE
International Conference on (pp. 1-7). IEEE.

[Barneers et al.] 5 Stars Open Data from Tim Barneers Lee.
http://www.slideshare.net/TheODINC/tim-bernerslees-5star-open-
data-scheme.

[Bellini et al., 2014b] P. Bellini, M. Benigni, R. Billero, P. Nesi, N.
Rauch, Km4City ontology building vs. data harvesting and cleaning

for smart-city services, Int. J. Visual Lang. Comput. (2014)
http://dx.doi.org/10.1016/j.jvlc.2014.10.023.

[Bellini et al., 2014] P. Bellini, P. Nesi, A. Venturi, Linked Open Graph:
browsing multiple SPARQL entry points to build your own LOD
views, Int. J. Visual Lang. Comput. (2014), http://log.disit.org.

[Bellini et al., 2015] P. Bellini, I. Bruno, P. Nesi, N. Rauch, Graph
Databases Methodology and Tool Supporting Index/Store Versioning,
J. Visual Lang. Comput. (2015)

[Bellini et al., 2016] P. Bellini, L. Bertocci, F. Betti, P. Nesi, Rights
enforcement and licensing understanding for RDF stores aggregating
open and private data sets, in: second IEEE International Smart Cities
Conference, ISC2 2016, Trento, Italy, SLIDES, 12 to 15 September
2016. http://events.unitn.it/en/isc2-2016.

[Bellini et al., 2017] Bellini, P., Cenni, D., Nesi, P., & Paoli, I. (2017). Wi-
Fi based city users’ behaviour analysis for smart city. Journal of
Visual Languages & Computing, 42, 31-45.

[Bonino et al., 2015] Bonino, D., Delgado Alizo M.T., Alapetitey, A.,
Gilberty, T. ALMANAC: internet of things for smart cities. 3rd
International Conference on Future Internet of Things and Cloud
(FiCloud), Rome, Italy, August 2015. DOI: 10.1109/FiCloud.2015.32

[Castillo et al., 2014] P.A. Castillo, A. Fernández-Ares, P. García-
Fernández, P. García-Sánchez, M.G. Arenas, A.M. Mora, G. Romero,
V.M. Rivas, J.J. Asensio, J.J. Merelo, Studying individualized transit
indicators using a new low-cost information system, in: Handbook of
Research on Embedded System Design, IGI Global, 2014, pp. 388–
407. http://dx.doi.org/10.4018/978-1-4666-6194-3.ch016, (Chapter:
16), January, Editors.

[Chrimes et al., 2015] Chrimes, D., Hu, W., Kuo, M., & Moa, B. (2015).
Design and Construction of a Big Data Analytics Framework for
Health Applications. SmartCity.

[CKAN] CKAN: http://ckan.org.
[Green Button Connect] Green Button Connect:

http://www.greenbuttonconnect.com/.
[Gupta et al., 2015] Gupta, K., Sachdev, A., & Sureka, A. (2015).

Pragamana: Performance Comparison and Programming Alpha-miner
Algorithm in Relational Database Query Language and NoSQL
Column-Oriented Using Apache Phoenix. C3S2E.

[IETF] IETF: https://www.ietf.org.
[KM4City] KM4City, http://www.km4city.org/
[Lin et al., 2013] F.J. Lin, Y. Ren, E. Cerritos, A feasibility study on

developing IoT/M2M applications over ETSI M2M architecture, in:
2013 International Conference on Parallel and Distributed Systems,
ICPADS, IEEE, 2013.

[Nesi et al., 2016] Nesi, P., Badii, C., Bellini, P., Cenni, D., Martelli, G.,
& Paolucc, M. (2016, May). Km4City Smart City API: an integrated
support for mobility services. In Smart Computing (SMARTCOMP),
2016 IEEE International Conference on (pp. 1-8). IEEE.

[OpenDataSoft] OpenDataSoft: https://www.opendatasoft.com/.
[Patti et al., 2016] Patti, E. and Acquaviva, A. IoT platform for Smart

Cities: requirements and implementation case studies. 2nd IEEE
International Forum on Research and Technologies for Society and
Industry Leveraging a better tomorrow (RTSI 2016), Bologna, Italy,
7-9 September 2016. pp. 1-6 IEEE DOI:10.1109/RTSI.2016.7740618

[SIIMOB-DE1-1] http://www.sii-mobility.org/images/deliverables/Sii-
Mobility-DE1-1aanalisi-requisiti-casi-uso-v3-0-pub-final.pdf

[Sii-Mobility] Sii-Mobility EU project, www.sii-mobility.org
[Sinaeepourfard et al., 2016] Sinaeepourfard, A., Almiñana, J. G., Masip,

A. and Marin-Tordera, E. Estimating Smart City Sensors Data
Generation Current and Future Data in the City of Barcelona. 2016
International Conference on Information and Communication, IEEE.
DOI: 10.1109/MedHocNet.2016.7528424

[SPARQL] SPARQL: https://www.w3.org/TR/rdf-sparql-query/.
[Swetina et al., 2014] J. Swetina, et al., Toward a standardized common

M2M service layer platform: Introduction to oneM2M, IEEE Wirel.
Commun. 21 (3) (2014) 20–26.

[Virtuoso] Virtuoso, https://virtuoso.openlinksw.com

144

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 30,2020 at 17:22:26 UTC from IEEE Xplore. Restrictions apply.

